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Abstract

We present calculations and measurements on the

shape of liquid metal droplets in electromagnetic
levitation experiments. A normal stress balance

model was developed to predict the shapes of
liquid metal droplets that will be obtained in a

microgravity experiment to measure the viscosity
and surface tension of undercooled metals. This

model was tested by calculating the droplet shapes
in containerless experiments conducted to
determine the surface tension of liquid metals.
Inconsistencies associated with the results of a

preuious paper are elucidated. The computational
results of the mathematical model are compared

with the results of ground-based experiments for
two different metals. The importance of the ratio

of electromagnetic skin depth-to-droplet radius to
the accuracy of the mathematical model is

discussed. A planned alternate approach to
modeling the shape by consideration of the entire

droplet rather than only the surface is presented.
As an example of an application, the influence of

the shape on the splitting of the surface oscillation
modes of levitated liquid metal droplets is
discussed.

Introduction

In recent years electromagnetic levitation has
become both a widely-used experimental technique

and an important part of the field of materials

processing. Levitation of liquid metal droplets
provides a clean, containerless environment that

makes it possible to perform high-precision
experiments and process reactive metals with high

melting points.

Electromagnetic levitation provides the oppor-
tunity to perform experiments on undercooled
liquid metals in such areas as the study of
nucleation and recalescence and measurement of

thermophysical properties such as heat capacity,
surface tension, and viscosity. The behavior of
undercooled melts has both fundamental and

practical interest. Undercooled melts are now

being processed in technologies such as near net

shape casting and rapid solidification. This
requires Increased knowledge about the melt-solid
phase transition and the temperature dependence

of thermophysical properties [ll.
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For most thermophysical property measurements,
the shape of the liquid metal droplet must be
known for the interpretation of the results. This is

one reason why it is desirable to have the ability to

predict these shapes for a given coil geometry,
applied current, and sample material. Develop-
ment of a mathematical model of the shape of

liquid metal droplets in electromagnetic levitation

experiments also makes it possible to optimize the

experiment parameters in order to achieve desired

sample shapes and positions.

The surface tension and viscosity of selected
undercooled metals will be measured in a

microgravity experiment during the NASA IML-2
mission, which is scheduled to fly in 1994. The

TEMPUS system is the electromagnetic levitation
device that will be used to position and excite

oscillations in the liquid metal droplets. A
schematic sketch of the TEMPUS system is

provided in Figure i. Prediction of the sample
shapes that will occur in the flight experiment will

enable the precise measurement of thermophysical

properties.
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Figure 1: Schematic diagram of TEMPUS system
with separate (a) positioning and (b) heating col'_

systems.

This work is intended to update the results

presented during the MHD Symposium at the 1992
TMS Annual Meeting [2]. In that paper results

were presented suggesting the agreement between
the predicted and measured shape of a levitated
metal droplet. It has since been discovered that
the agreement was achieved as a result of self-

canceling errors in measurement and calculation.
The errors present in the previous work are
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addressed,and a new comparisonof experi-
mentally-determinedandcalculatedshapesfor two
different metals is presented. This paper is
designedto be a report on our progress in
modelingtheshapeoflevitatedmetaldroplets,and
discusseshow we are addressingthe complex
issuesinvolved.

F0rmulation and Computational Methodology

The two major computational tasks associated with

modeling the equilibrium shape of an electromag-
netlcally-levitated molten metal droplet 'are calcu-

lation of the magnetic field distribution in the

droplet and calculation of the shape, which is
determined by equilibrium of the component of
stress normal to the surface of the droplet.

(i) Electromagnetic calculations

The magnetic field distribution in the levitated
droplet is calculated using the method of mutual
inductances presented by, among others, EI-

Kaddah and Szekely [3] and Zong et al. [4]. The

axisymmetric levitated droplet is discretized into a
set of annular electrical circuits through which
induced current flows. Once the induced current
distribution is calculated, the distribution of

magnetic flux density can be calculated by taking
the curl of the distribution of vector potential, or by

using the Biot-Savart law. Use of the Biot-Savart
Law is preferable because it utilizes numerical

integration as opposed to numerical differentiation.
which is prone to numerical errors. The Biot-
Savart Law was used in the calculations that

provided the results presented here. This

represents an improvement over the previous
model.

The discretization of the droplet domain and the

shape of the cross section of the annular circuits
can be seen in Figure 2. Also visible is the

exponential distribution of grid points used to
better represent the distribution of magnetic flux

density, which decays exponentially from the
magnitude at the surface with distance into the

droplet. In this paper an important modification to
the calculation of mutual inductances between each

pair of annular circuit elements, which have an
approximately rectangular cross section, is made.

Figure 2; Discretization of droplet domain, showing
exponential grid point distribution and rectangular
cross section of annular circuit elements.

Maxwelrs formula for the mutual inductance

between two coaxial wires assumes that the cross

section of the wires is circular. Following Dudley
and Burke [5] and Burke et al. [6], Lyle's method is

used to replace the approximately rectangular
circuit elements with two representative locations

at which Maxwelrs formula can be applied. The
mutual inductance between a pair of rectangular

circuit elements is then found by averaging the
mutual inductances calculated with Maxwell's

formula at these locations. The method was further

adapted to account for the fact that the sides of the

approximately rectangular cross sections were not

always oriented parallel and perpendicular to the
axis of symmetry, as can be seen in Figure 2.
Furthermore, a formula from Burke et al. [6] is used

to calculate the self-inductance of the annular

circuit elements of approximately rectangular cross

section.

(ii) Free surface shape calculations

There are two self-consistent methods by which

the equilibrium shape of an electromagnetically-
levitated molten metal droplet has been modeled.

The equilibrium shape is calculated either by
balancing the normal stresses at each point on the
free surface (known as the local method) [2,7-9[ or

by minimizing the total energy of the system (global
method) [8,10-15].

Both models assume that the electromagnetic skin

depth

which characterizes the distance into the droplet
of electrical conductivity _ that the external

magnetic field of frequency v can penetrate, is
much smaller than the radius of the droplet,

allowing the conclusion that internal fluid flow does
not influence the free surface shape and can be

ignored. In the case of very thin skin depth, the
molten metal droplet behaves like a perfect
conductor into which the magnetic field would not

penetrate and in which no fluid flow would be
driven.

In other words, it is assumed either that the flow Is

inviscid (# = 0) or non-existent (_ = 0). Either one

of these assumptions is sufficient to eliminate the
normal viscous stress from the free surface

boundary condition.

Differences between the two modeling approaches

largely concern the rate of convergence to the

equilibrium shape. According to Bhamidipati and
EI-Kaddah [16], in the energy minimization

technique, the displacement of the melt free
surface from non-equilibrlum to equilibrium shape

is precisely defined in terms of the derivative of
the variational statement of the energy functional of

the system, thus ensuring rapid convergence. The
local stress balance method, though simpler to

implement, relies on arbitrary choice of displace-
ment, and requires more iterations to obtain a

converged solution.
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(a] Normal stress balance method(Local method)

This method is the technique most frequently used
in developing mathematical models of electro-

magnetic shaping operations, such as the shape of

the meniscus in electromagnetic casting [16-22].

At equilibrium the net normal stress at all points

along the free surface is zero. The normal
component of the stress balance is given by

r(l+ ±]= 0 ...........(p..-p.) +pg(z :- r=- R2) (2)

Before considering the shape determination algo-
rithm, it is useful to consider how the various

physical phenomena contribute to the normal
stress balance by examining the terms in Equation
(2).

( I ) Hydrostatic pressure

The first term represents the difference between

the hydrostatic pressure Px. which is uniform

throughout the entire fluid, and the atmospheric

pressure.

(2) Gravitational head

The second term is the gravitational head.

referenced to the top of the droplet, thereby
defined to be positive everywhere. The contri-
bution to the pressure of the gravitational head at

any point in the droplet depends on the pressure

at the top of the sample, the depth of the point,
and the specific weight (pg) of the fluid [23]. The
gravitational head at any point in the droplet is

referenced to the pressure at the top of the droplet

by taking the contribution of gravitational head to

the pressure at that point to be zero.

Pressure always acts from the liquid in the
direction normal to a surface [23], therefore, the

hydrostatic pressure and the gravitational head

exert a normal force per unit area on the surface in
the outward direction.

(3) Magnetic pressure

The third term is the normal stress component of
the Maxwell stress tensor, representing the force

per unit area exerted by the external magnetic field
on the surface. This is commonly called the

magnetic pressure, and only depends on the
tangential component of the magnetic field because

there is no component of magnetic field normal to
the surface in the small skin depth approximation.

In terms of the magnetic flux density, the magnetic

pressure is [4]

p. = r = (3)
2]_0

where B, is the temporal average of the tangential

component of the time-dependent magnetic flux
densiW.

(4) Surface tension surface force density

The final term in the normal stress balance

represents the surface force density due to surface

tension [171. The surface tension of the droplet is
"/, and the two principal radii of curvature of the

surface R I and R 2 are defined as positive for the

outward-bulging surface [24]. The formulas used to

calculate the principal radii of curvature in

axlsymmetric spherical coordinates are presented
in [21. The effect of surface tension at a given point
is directed inward and normal to the surface.

The hydrostatic pressure and gravitational head
contribute a normal force per unit area outward
from the surface, while the magnetic pressure and

surface tension surface force density exert an
inward normal force per unit area.

The equilibrium free surface shape is calculated as
follows [2,41:

(i) The magnetic flux density distribution inside

the droplet is calculated using the method of
mutual inductances and the Biot-Savart law, as

described above, for the initial shape, a sphere.

(ii) The gravitational head, magnetic pressure,

and surface tension surface force density are
calculated at a finite number of points on the
surface. From these contributions, a stress

imbalance at each of these points is calculated.

Based on the algebraic sign conventions used above,

this value will be negative at all points on the
surface. (Note that this value will vary along the

surface until the free surface shape which satisfies

the equilibrium condition, Equation. (2), is found.)

(iii) The surface-area weighted average stress
imbalance for the surface is then calculated, after

which the difference from this weighted average at
each point on the surface is calculated. The

difference will be positive at some points and
negative at others. If the value is negative, this
indicates that the magnitude of the stress

imbalance at that point is greater than the

magnitude of the weighted average stress

imbalance, and the point should be moved inward
(toward the center of the droplet).

(iv) Each point on the surface is moved in the
radial direction along a line of constant angle

(sometimes called a spine) by an amount

proportional to the difference between the stress
imbalance and the surface-area weighted average at

that point. This ensures that the volume of the
droplet will be conserved. A new shape is
determined by these displacements of the surface.

(v) The sum of the squares of the differences
between the stress imbalance and the weighted

average at all points along the surface is calculated
as an indicator of how much the current free

surface shape deviates from the equilibrium shape.
A sum of squares is used to prevent positive and

negative values from canceling each other and
falsely suggesting that equilibrium has been

59



achieved. When this sum of squares is less than a
critical value, the equilibrium shape has been found

to within a given tolerance. If this condition is not
satisfied, then the procedure is repeated•

The results presented in this paper were obtained

using the normal stress balance method.

(b) Energy minimization (Global method)

The equilibrium shape of the free surface, resulting

from a balance among magnetic pressure, surface
tension, and gravity forces, is governed by the

equation [11]

n 2

+ 7K + pgz = const. (4)
2/a.

where B is the root-mean-square magnitude of the

local magnetic field, and K is the sum of the

principal radii of curvature of the droplet•

An energy functional for the variational technique is
defined which represents the total energy of the

system. For droplet domain f_ and free surface

boundary o_, the energy functional is [11]

n 2

JJJx 3 2/1. o _J_

(5)

In order to minimize the total energy with respect

to the constant volume constraint on the droplet, a

new functional using the Lagrange multiplier _. is

defined. It is given by [12]

_'(f_) = ¢(f2) - _.j';Sdv (6)

where X is expressed as [121

+ TK + pgz ds

Z = (7)

Using the global method, the equilibrium free

surface shape is calculated as follows [81:

(i) The magnetic flux density distribution at the
surface of the droplet is calculated by considering
elements at the surface and the region outside the

droplet, which is made possible by the assumption
of small or zero skin depth. The initial shape is a

sphere.

(ii) The magnetic energy, surface energy, and

gravitational energy are calculated along cgf_.

(iii) The Lagrange multiplier for the surface is
calculated using Equation (7). Note that L is the
surface-area weighted average free energy for the

surface, and is completely analogous to the surface-

area weighted stress imbalance calculated in step
(iii) of the normal stress balance method above.
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(iv) The displacement of the surface effected

reduces _(fl) with magnitude determined by an

adjustable coefficient that permits rapid

convergence.

(v) If the derivative of the functional with

respect to the domain, 8o/Io_, is not sufficiently

small, then the procedure is repeated.

Experimental Work

The experiments were performed on pure nickel

and copper droplets (Johnson Matthey, 99•99%)
with mass of approximately 1 g. A detailed

description of the levitation facility at DLR is given
in [25]. A conical coil arrangement that provided
stable levitation of the droplets was used. A sketch

of the coil geometry, as well as the strength of the
external magnetic field and magnetic field gradient

on the symmetry axis of the coils for a peak applied

current of Io = 405 A, which was used in the case

of the nickel sample, is shown in Figure 3.
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Figure 3: _ Conical coil arrangement with field
strength for a peak applied current of Io=405 A.

The RF-generator was operated at a frequency of
333 kHz. The peak applied coil currents were 405
A, in the case of nickel, and 310 A, in the case of

copper. The samples were convectively cooled by

He gas. Non-contact temperature measurement
was performed with a standard two-color ratio

pyrometer.

Experiments with nickel and copper droplets were
performed in the same way. The droplet was
levitated with the coil current given above. During
levitation, the translational oscillation frequencies

and the surface oscillation frequencies were

measured using a method explained in [26] and
[27]. The samples were then rapidly solidified by

cooling with He gas. The volume change upon
solidification was assumed to be isotroDic and,
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therefore,shape-preserving.Figure 4 showsa
pictureof a sampleprocessedin thisway. Nextto
this is a shapemeasuredfroma projectionontoa
gridanda fit of sphericalharmonics

R(_) = R,(1 + t._ etYt°(IF) )
(8)

at the contour is shown to give an image of the

distortion from spherical shape.

Figure 4: Fit of spherical harmonics to experi-
mental shape.

In order to eliminate the effect of "frozen-in"

oscillations on the shape of the rapidly-solidified
droplet, the mean values of measurements made on
many levitated and solidified droplets were used to

determine the experimentally-determined equilib-
rium shape. The measured coefficients of the

spherical harmonics e, (with errors £_et) are listed
in Table 1.

I

0

1

2

3

4

5

£t &£c

3.545 0.007

0.088 0.006

0.141 0.006

-O.048 0.005

0.015 0.006

-0.004 0.006

Table 1: Expansion coefficients of R(_).

An important application of the knowledge of the
distortion of a levitated droplet is the influence on
the surface oscillation modes of levitated droplets.

In the oscillating drop technique, the frequencies
of the surface oscillations are used to determine

the surface tension of liquid metals. Due to gravity
and a lack of spherical symmetry, the fundamental

oscillation mode is split into a number of modes,
each with its own frequency. The measurements

then yield spectra with multiple peaks, with a
maximum of five. Cummings et al. [28] and

Suryanarayana et al. [29] have recently calculated
the effect of distortion of the sample from a

spherical shape on individual frequencies.

According to Cummings [28] the frequencies of the
five modes are expressed in terms of the Rayleigh

frequency vR =x/_/3nm as

vzo = v,(1-O.6758e 2 - 2.1760e,)

v2_a = v_(1- 0.3379e 2 + 1.4507e,) • .

v_a = v_(1 + 0.6758e 2 - 0.3627e,) (9)

with the coefficients et defined in Equation (8).

Both authors indicated that assignment of the

modes is essential to obtaining precise results in

the measurement of surface tension by this
technique.

These results have been experimentally verified by

Sauerland et al. [27] using digital image processing
methods. Table 2 shows the good agreement

between the splitting of the modes for the nickel
sample in Figure 4 as predicted by Equation (9)

and the measured oscillation frequencies.

calculated 0.914 0.974 I .089

measured 0.928 0.979 1.057

Table 2: Comparison of frequency splitting.

To summarize, there is significant interest in

having a tool to predict the deformation of droplets
in levitation experiments because it would allow

them to apply the theories of Cummings et al. and

Suryanarayana et al. directly. This would enable
prediction of the mode splitting that would result,
facilitating assignment of oscillation modes and

increasing the precision of surface tension
measurements.

Computed Results

The equilibrium free surface shapes of molten

liquid copper and nickel droplets were calculated

using the input parameters listed in Table 3, which
correspond to the experimental conditions

Parameter Cu Ni
310 405Applied current (A)

Frequency (kHz)

Radius of sphere (mm)

Conductivity (13.m)"

Density (kg/m z)

Surface tension (N/m)

333 333

2.982 3.11

5x106 1.205x106

8106 8080

1.45 1.82

Table 3: Input parameters used for equilibrium
free surface shape calculations.
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described above. Plots of the experimentally-
determined shape, indicated by a solid line, and

the calculated shape, indicated by a dashed line,
are provided for copper and nickel in Figures 5 and

6, respectively. In each figure the dotted line
represents the shape of a sphere of equal volume.

Figure 5: Comparison of results for Cu droplet.
..... Spherical shape

-- Experimentally-determined shape

--- Calculated deformed shape

Figure 6: Comparison of results for Ni droplet.
..... Spherical shape

Experimentally-determined shape
--- Calculated deformed shape

From the figures it can be seen that the calculated

shapes agree quitewell with the experimentally-
determined shapes, but it is important to realize

that the visual comparison is quite flattering
because the deformation of the droplet is relatively

small. In each case the calculated shape correctly
depicts the teardrop shape produced due to gravity
in samples levitated under earthbound conditions.

Discussion

The ability to predict, through mathematical

modeling, the equilibrium free surface shape of

electromagnetically-levitated droplets is important
to the performance of surface tension measure-

ments by the oscillating drop technique. This is

quite a substantial undertaking due to the coupling
of many complex phenomena, principally
electromagnetic phenomena, free surface
phenomena, and internal fluid flow.

In the normal stress balance model presented
here, the small skin depth approximation was used

in order to calculate the free surface shape of the
sample by considering only the surface and

neglecting the interior of the droplet. The ideal
case for this model would then involve a sample of

infinite conductivity (zero skin depth). However,
in the cases of the copper and nickel droplets
considered here, the skin depth is 13.08% of the

radius for the copper droplet, and 25.55% of the

radius for the nickel droplet. Both of these thereby
constitute a deviation from the ideal case for this
model.

This helps to interpret the results shown in
Figures 5 and 6. In both cases, the calculated

shape is less deformed than the experimentally-
determined shape. The reason for this is that,

since the sample has finite conductivity (and a
nonzero skin depth to droplet radius ratio), there
is some penetration of the field into the interior of

the droplet. As a result, the magnitude of the

magnetic pressure, calculated from the magnitude

of magnetic flux density at the surface provides a
lower bound estimate of the deforming effect of the

magnetic field. A consideration of the skin depth-
to-radius ratios for the two cases predicts the

result that the calculated shape matches the

experimental shape better in the case of copper
than in the case of nickel.

Figures 5 and 6 show that the normal stress
balance model provides a good estimate of the
equilibrium free surface shape of levitated metal

droplets. In order to achieve even better
agreement, the computed results herein suggest

that, when the ratio of skin depth to sample radius
is not negligible, the interior of the sample must be

considered. This finding is also useful for modeling
the shapes of electromagnetically-shaped liquid

metals in general. In order to model the free

surface shape of a large pool of molten metal
subjected to electromagnetic forces, consideration
of the surface is sufficient, however, in cases where

the sample dimensions are small, as is often the
case with meniscus control, the interior of the

droplet must be considered.

Planned Approach

Solution of the Navier-Stokes equations with an
electromagnetic force fluid flow source term and a
free surface boundary condition allows the effect of

the electromagnetic force distribution on the

interior of the droplet to be considered.

i
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The Navier-Stokes equations take the following

form:

_a - i - i - - (I0)

where _ is the veloeity vector field, which

represents the internal flow in the droplet, and g
is the viscosity of the fluid.

The distribution of electromagnetic force per unit

mass is expressed as

p_,=jx_ (11)

where J is the induced current density and B is

the magnetic flux density. This electromagnetic
force distribution is calculated as described above,

and supplied as a source of fluid flow to a

computational fluid mechanics package such as
FIDAP or PHOENICS, which would numerically

solve Equation (I0), subject to the free surface

boundary condition for axisymmetric geometries.

This is given by a balance of normal components of

stress as

("-P')--
where the difference between the fluid pressure

and the atmospheric pressure p, is equal to the

sum of the surface tension surface force density

and the normal component of viscous stress at the
free surface. The coordinate n represents the

curvilinear coordinate normal to the surface. In
static fluids, Equation (12) reduces to Laplace's

formula.

An order-of-magnitude analysis of the terms in the
free surface boundary condition, Equation (12),

indicates that the normal component of the viscous

stress is roughly three orders of magnitude smaller
than the surface tension surface force density. This

suggests that the internal fluid flow itself does not
govern the shape of the free surface. The salient

point to make about the calculation method
involving solution of the Navier-Stokes equations is
that it allows for a more accurate representation of

the electromagnetic phenomena in the droplet.

Fukumoto et al. [30] have used this approach to

predict the meniscus shape in an electromagnetic
caster. It was found that the results of simulations
in which flow was considered and in which flow

was neglected were similar at higher frequencies.
This must be due to the existence of smaller skin

depth at higher frequencies, which translates to
less internal fluid flow, as discussed above.

This approach constitutes a considerable compu-
tational undertaking because the transient free
surface shape and the electromagnetic force

distribution simultaneously influence each other,

requiring that the Navier-Stokes equations and the
equations governing the electromagnetic phenom-
ena be solved at each time step. It is important to

note, however, that the equations governing the

fluid flow and electromagnetic phenomena are

decoupled by the assumption that the internal fluid
flow in the droplet does not affect the magnetic

field distribution. This allows the electromagnetic
force distribution to be calculated using the free

surface shape determined for the previous time

step and subsequently supplied to the Navier-
Stokes equations as a source term in order to
calculate the new internal fluid flow field and free

surface shape.

Calculation of the free surface shape by solution of
the Navier-Stokes equations is further complicated

by the fact that the internal fluid" fl'ow in the

droplets levitated in ground-based experiments is
turbulent. Turbulent flow is particularly difficult to

model in this system because the entire domain is

bounded by a free surface.

To address the problem of non-negligible skin

depth-to-radius ratio in these systems, we have
begun a computational effort to couple the electro-

magnetics code that we have developed with the
finite-element fluid flow package FIDAP so that the

magnetic field distribution can be re-calculated at
each time step as the free surface shape of the

droplet changes.
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